
71

File editing and
management: rich

formatting, file storage,
drag and drop

The web is no longer merely a set of interconnected documents that people use to

find information; it’s also an application platform that allows developers to build

web apps that anyone with a computer and browser can use. In HTML5, new stan-

dardized JavaScript APIs enable web apps to present an application interface similar

to current desktop apps. Features such as rich-text editing, drag/drop interactions,

local file management, and geolocation are now possible.

 This chapter teaches you how to use all of these new features and APIs by walk-

ing you through the build of the Super HTML5 Editor, an HTML editor application

that runs entirely on the client side, with no server-side requirements. The applica-

tion allows users to manipulate HTML documents using one of two editor modes:

This chapter covers

■ Rich-text HTML editing

■ Location awareness with geolocation

■ Working with files in a local filesystem

■ Implementing drag and drop

http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html

72 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

■ A visual WYSIWYG editor for formatting text, inserting hyperlinks, adding images,

and inserting maps

■ An HTML markup editor for changing, adding, and deleting markup elements, use-

ful when you need formatting or a layout feature not supported in the visual editor

To make things more fun, the application also offers a client-side sandboxed filesys-

tem where the user can create, import, export, edit, view, and delete files. To put icing

on the cake, users will also be able to import and export files using drag and drop.

 Let’s jump right in with a high-level overview of the sample application you’re

going to build, followed by work on prerequisites and first steps.

3.1 The Super HTML5 Editor: application overview,
prerequisites, and first steps

As you can see in figure 3.1, the final application will be split into two major views, the

File Browser view and the File Editor view.

Why build the Super HTML5 Editor?

While working through this chapter’s sample application, you’ll learn to use the following:

■ The HTML Editing API to allow users to edit HTML markup using rich-text controls

■ The Geolocation API to capture the user’s current location for use in a map

■ The File System API to provide a client-side sandbox to store the user’s files

■ Drag and drop to simplify the importation and exportation of files

File Browser view File Editor view

Figure 3.1 The two views of the Super HTML5 Editor application are shown. The File

Browser view (left) allows users to manipulate the files stored in the app; the File Editor

view (right) enables the file to be modified using rich-text editing controls or directly using

HTML markup.

73The Super HTML5 Editor: application overview, prerequisites, and first steps

The File Browser view allows users to create empty files, import files from their computers,

view a list of existing files, and perform an action on one of these files such as View, Edit,

Delete, and Export. This view also provides drag-and-drop support for working with files.

 The File Editor view provides two editors for manipulating the file’s contents: a visual

WYSIWYG editor and a raw HTML markup editor. This view also allows the user to save

their changes, preview the file, and return to the File Editor view. It will also warn the user

if they try to navigate away from the File Editor view when they have unsaved changes.

In this section, you’ll build the HTML document for the application and implement

basic navigation and state management functionality using JavaScript. The work hap-

pens in five steps:

■ Step 1: Create index.html.

■ Step 2: Add markup for the File Browser view.

■ Step 3: Add markup for the File Editor view.

■ Step 4: Initialize the application.

■ Step 5: Enable navigation between views and manage the state of documents

being edited.

Before you begin: important browser notes

The File System API (also known as the File Directories and System API) is a relatively

late addition to the HTML5 specification and thus hasn’t yet been implemented by

most browser vendors. Although most have provided partial support for the accompa-

nying File API, which you can use to read the contents of local files that the user

selects or drops into the application, only Google Chrome currently supports the File

System and File Writer APIs that are used to actually create and store files on the

client side. The sample application has been written to include vendor prefixes that

will probably be used when the other browsers start to include support for these fea-

tures, but we can’t guarantee that their actual implementation will follow this path.

Also, if you’re using Chrome and plan to test this application in your local directory

instead of on a server, you’ll need to start Chrome with the following option:

 --Allow-File-Access-From-Files

If you don’t, your application’s client-side filesystem will be inaccessible and the Geo-

location API won’t be able to access your location.

Prerequisites

Before you create the index page, you need to handle a couple of prerequisites:

1 Create a directory, and put the style.css file from this chapter’s source code in it.

2 Create an empty app.js file, and put it in the same directory as the style.css file.

Note that all files for the book are available at the book’s website: http://www.man-

ning.com/crowther2.

http://www.manning.com/crowther2
http://www.manning.com/crowther2

74 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

At this stage you’re probably itching to get started, so let’s do just that.

3.1.1 Defining the HTML document structure

The initial code you need loads in the CSS and JavaScript resources for the application

and defines the <section> elements for each of the two views.

STEP 1: CREATE INDEX.HTML

Begin by creating a file named index.html, and add the contents of the following list-

ing to it.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>Super HTML5 Editor</title>
 <link rel="stylesheet" href="style.css">
 <script src="app.js"></script>
</head>
<body class="browser-view">
 <header><h1>Super HTML5 Editor</h1></header>
 <section id="list">

 </section>
 <section id="editor">

 </section>
</body>
</html>

STEP 2: ADD MARKUP FOR THE FILE BROWSER VIEW

The File Browser view is split into two zones. The first zone contains two forms:

■ A form for creating an empty file

■ A form for importing a file from the user’s computer

The second zone includes a list of files that the user has created or imported. To build

these zones you’ll use the <details> and <summary> elements, both of which are new in

HTML5. The <details> element allows you to create a collapsible section in your

code, which would previously have only been possible using a combination of

JavaScript and CSS. Adding a <summary> element within <details> will put a label on

the expanded <details> content. Add the code from the next listing to the

index.html file, inside the <section> element with the ID attribute value list.

<h1>File Browser</h1>
<details open id="filedrop">
 <summary>Create File</summary>
 <form name="create">
 <div>

Listing 3.1 index.html—Application HTML structure

Listing 3.2 index.html–File Browser view markup

The value of class will determine
the currently displayed view.
Navigating between views will be
implemented later in the section.

The File Browser view markup
should be inserted here.

The File Editor view markup
should be inserted here.

This zone will be a target drop zone for files later in
this chapter. The open attribute on the <details>
element sets it to be expanded by default.

The create form allows users
to create a new empty file.

75The Super HTML5 Editor: application overview, prerequisites, and first steps

 <h2>Create an empty file</h2>
 <input type="text" name="name" placeholder=" e.g. index.html">
 <input type="submit" value="Create">
 </div>
 </form>
 <div class="spacer">OR</div>
 <form name="import">
 <div>
 <h2>Import existing file(s)</h2>
 <input type="file" name="files" multiple accept="text/html">
 <input type="submit" value="Import">
 </div>
 </form>

 <div class="note">
 Note: You can drag files from your computer and
 drop them anywhere in this box to import them into the application.
 </div>
</details>

<details open>
 <summary>My Files</summary>
 <div class="note top">
 You currently have 0 file(s):
 </div>
 <ul id="files">
 <div class="note">
 Note: You can drag any of the files in the list
 above to your computer to export them from the application.
 </div>
</details>

STEP 3: ADD MARKUP FOR THE FILE EDITOR VIEW

This File Editor view features a switch button that allows the user to change between

Visual edit mode and HTML edit mode. In Visual mode, the editor will behave much

like a basic word processor, and it includes buttons for formatting the content in bold,

italic, and so forth. Each button has an attribute named data-command, which is an

example of an HTML5 data attribute. These attributes make it easy to associate primi-

tive data with an HTML element, and an accompanying JavaScript API makes it a

breeze to get back this data when it’s needed. The code for the File Editor view is

shown in the following listing and should be added to index.html, inside the <sec-

tion> element with the ID attribute value editor.

<h1>Editing Back to File
Browser</h1>

<div class="mode-toolbar">
 <div class="left">
 <div>Edit Mode:</div>
 <button id="edit_visual" class="split_left active">Visual</button>
 <button id="edit_html" class="split_right">HTML</button>
 </div>

Listing 3.3 index.html–File Editor view markup

The import form allows users to
import files from their computer.

This will be populated
later with a list of files.

Two buttons allow the user to switch
between Visual and HTML edit modes.

76 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

 <div class="right">
 <button id="file_save" class="green">Save File</button>
 <button id="file_preview">Save & Preview</button>
 </div>
</div>

<details open>
 <summary>File Contents</summary>
 <div id="file_contents">
 <div id="file_contents_visual">
 <div id="file_contents_visual_toolbar">
 <button data-command="bold">B</button>
 <button data-command="italic">I</button>
 <button data-command="underline"><u>U</u></button>
 <button data-command="strikethrough">S</button>
 <button data-command="insertUnorderedList">List</button>
 <button data-command="createLink">Link</button>
 <button data-command="unlink">Unlink</button>
 <button data-command="insertImage">Image</button>
 <button data-command="insertMap">Location Map</button>
 </div>
 <iframe id="file_contents_visual_editor"></iframe>
 </div>
 <div id="file_contents_html">
 <textarea id="file_contents_html_editor"></textarea>
 </div>
 </div>
</details>

With the two views defined, you can now implement JavaScript code to enable naviga-

tion between them.

3.1.2 Implementing navigation and state management in JavaScript

First, let’s create an anonymous function block to ensure that the application doesn’t

pollute the global JavaScript namespace. This block will initialize the application

when the DOM has finished loading.

STEP 4: INITIALIZE THE APPLICATION

Create a new file named app.js and save it in the same directory as the index.html file

you created previously. Add the contents of the following listing to this file.

(function() {
 var SuperEditor = function() {

 };

 var init = function() {
 new SuperEditor();
 }

 window.addEventListener('load', init, false);
})();

Listing 3.4 app.js–Application initialization code

Contains several buttons that
allow the user to format the
currently selected content in
the editor window.

The visual
editor is an
<iframe>

element,
which will

later be
made

editable
using the

designMode
property.

The HTML markup editor is a
regular <textarea> element.

This constructor function is
where the rest of the app’s
code should be inserted.

77The Super HTML5 Editor: application overview, prerequisites, and first steps

STEP 5: ENABLE NAVIGATION BETWEEN VIEWS, MANAGE THE STATE OF DOCUMENTS BEING EDITED

With the code to initialize the application out of the way, let’s add code to keep track

of whether the user has made changes to a document and to switch between the File

Browser and File Editor views. The code in the next listing should be added inside the

SuperEditor constructor function that you created in the previous listing.

var view, fileName, isDirty = false,
 unsavedMsg = 'Unsaved changes will be lost. Are you sure?',
 unsavedTitle = 'Discard changes';

var markDirty = function() {
 isDirty = true;
};

var markClean = function() {
 isDirty = false;
};

var checkDirty = function() {
 if(isDirty) { return unsavedMsg; }
};

window.addEventListener('beforeunload', checkDirty, false);

var jump = function(e) {
 var hash = location.hash;

 if(hash.indexOf('/') > -1) {
 var parts = hash.split('/'),
 fileNameEl = document.getElementById('file_name');

 view = parts[0].substring(1) + '-view';
 fileName = parts[1];
 fileNameEl.innerHTML = fileName;
 } else {
 if(!isDirty || confirm(unsavedMsg, unsavedTitle)) {
 markClean();
 view = 'browser-view';
 if(hash != '#list') {
 location.hash = '#list';
 }
 } else {
 location.href = e.oldURL;
 }
 }

 document.body.className = view;
};

jump();

window.addEventListener('hashchange', jump, false);

Listing 3.5 app.js—View navigation and state management code

These variables will store the current
view and filename (if in the File Editor

view) and a marker to indicate if the
document has been modified (isDirty).

If the user tries to close the window or
navigate to another page, you’ll check

to see if they’ve made unsaved changes
and warn them first if necessary.

The jump event handler uses hashes in
the URL to switch between the two views.

If the URL hash
contains a forward
slash, it should
show the File
Editor view for the
file after the slash
(if it exists).

Use the class attribute on the
<body> element to indicate
which is the current view–the CSS
will take care of showing/hiding
the views as necessary.

The jump function is called
on page load and whenever
the URL hash changes.

78 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

TRY IT OUT

At this point, you should be able to navigate around the application. One slight incon-

venience is that you won’t be able to easily get to the File Editor view just yet, because

you haven’t added any of the File System functionality. To cheat your way around this,

modify the URL manually, changing the #list at the end to #editor/index.html, as

illustrated in figure 3.2.

 With a modest amount of effort, you’ve roughed out the basic HTML structure,

navigation functions, and state management for the application. In the next section,

you’ll discover how to enable the visual editor and connect it to the HTML editor, how

to implement the formatting buttons, and how to use geolocation to insert a map of

the user’s current position coordinates.

3.2 Rich-text editing and geolocation

The visual editor in this chapter’s sample application will allow users to write and edit

rich-text content using formatting buttons that are similar to those in most word-

processing applications. After formatting the document, users may need to see the

underlying HTML markup to make adjustments, so the application will enable them to

switch between the visual editor and the HTML editor. Also, so that you can at least get

your hands dirty with the Geolocation API, we’ll have you add into the application a

button that inserts a location map.

The work happens in three steps:

■ Step 1: Turn designMode on and synchronize the content of both editors.

■ Step 2: Implement the rich-text editing toolbar in the visual editor.

■ Step 3: Use geolocation to insert a map of the user’s location.

In this section, you’ll learn

■ To use the designMode property to signal to the browser that an HTML docu-

ment is editable

■ To use the Editing API’s execCommand method to provide rich-text editing controls

■ To use the Geolocation API

Figure 3.2 When you load the application right now, a hash value #list will

be appended to the end of the URL. To navigate to the editor view manually,

change this to #editor/index.html as shown.

79Rich-text editing and geolocation

3.2.1 Using designMode to make an HTML document editable

To facilitate the visual editor mode in your app, you need to allow users to directly

edit the HTML document without needing to use HTML markup. In order to make

this work, you need to take advantage of a JavaScript object property, designMode.

When you set this property’s value to on for a given document, the entire document

becomes editable, including its <!DOCTYPE> declaration, and <head> section. You’ll

use this property with our visual editor’s <iframe> to make the entire contents of the

<iframe> editable.

NOTE If you need to edit the contents of only a specific HTML element, then
use the contenteditable attribute. Although contenteditable is new in
HTML5, it started out as a proprietary extension in IE and was later adopted
by other browser vendors. As a result, browser support for it is widespread, so
you can use it without fear of leaving anyone behind.

Setting designMode to on is straightforward, but you also need to build logic that will

connect the visual editor to the HTML markup editor so that any changes are synced

across them when appropriate. You also need to implement the switch button to allow

the user to switch between the two editor modes. Enough chat about what you need to

do—let’s go ahead and do it.

STEP 1: TURN DESIGNMODE ON AND SYNCHRONIZE THE CONTENT OF BOTH EDITORS

In the app.js file, add the following code immediately after the line window.addEvent-

Listener('hashchange', jump, false).

var editVisualButton = document.getElementById('edit_visual'),
 visualView = document.getElementById('file_contents_visual'),
 visualEditor = document.getElementById('file_contents_visual_editor'),
 visualEditorDoc = visualEditor.contentDocument,
 editHtmlButton = document.getElementById('edit_html'),
 htmlView = document.getElementById('file_contents_html'),
 htmlEditor = document.getElementById('file_contents_html_editor');

visualEditorDoc.designMode = 'on';

visualEditorDoc.addEventListener('keyup', markDirty, false);
htmlEditor.addEventListener('keyup', markDirty, false);

var updateVisualEditor = function(content) {
 visualEditorDoc.open();
 visualEditorDoc.write(content);
 visualEditorDoc.close();
 visualEditorDoc.addEventListener('keyup', markDirty, false);
};

var updateHtmlEditor = function(content) {
 htmlEditor.value = content;
};

Listing 3.6 app.js—Enabling designMode and connecting the two editors

Enable
editing of
the visual

editor
iframe by
switching

on its
designMode

property.

Mark the file as dirty
whenever the user
makes changes to
either editor.

This function updates the visual editor
content. Every execution of updateVisual-
Editor constructs a new document, so you
must attach a new keyup event listener.

This function updates
the HTML editor content.

80 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

var toggleActiveView = function() {
 if(htmlView.style.display == 'block') {
 editVisualButton.className = 'split_left active';
 visualView.style.display = 'block';
 editHtmlButton.className = 'split_right';
 htmlView.style.display = 'none';
 updateVisualEditor(htmlEditor.value);
 } else {
 editHtmlButton.className = 'split_right active';
 htmlView.style.display = 'block';
 editVisualButton.className = 'split_left';
 visualView.style.display = 'none';

 var x = new XMLSerializer();
 var content = x.serializeToString(visualEditorDoc);
 updateHtmlEditor(content);
 }
}

editVisualButton.addEventListener('click', toggleActiveView, false);
editHtmlButton.addEventListener('click', toggleActiveView, false);

PROGRESS CHECK: TRY IT OUT

At this point, you should be able to type text in the visual editor. You’ll notice that if

you switch to the HTML editor, the contents should match. Similarly, if you make

changes in the HTML editor and switch back to the visual editor, your changes should

be shown. Try putting some arbitrary HTML styling markup in the HTML editor and

notice the impact it has in the visual editor.

NOTE If you try to use the formatting toolbar to style the contents of the
visual editor, you’ll notice that none of these buttons work. Don’t fret; you’ll
fix that in the next section.

After you’ve made changes, try closing the window. You should see a warning message

like the one shown in figure 3.3.

 Because the saving function hasn’t been implemented yet, you can ignore this

warning and leave the page. You’ll add the saving function in a later section.

 Now that you have the basic visual and HTML editors working, let’s move on and

add some formatting functions to those do-nothing toolbar buttons.

This event handler
toggles between the
visual and HTML
editors. When updating
the HTML editor, the
XMLSerializer object is
used to retrieve the
HTML content of the
iframe element.

Figure 3.3 The isDirty variable we

created earlier allows the application to

keep track of whether the user has made

changes to the document. If they’ve made

changes and try to close the window

without saving, they’ll be shown this

warning message to confirm they want to

leave the page.

81Rich-text editing and geolocation

3.2.2 Providing rich-text editing controls with execCommand

As you’ve already seen, the contenteditable attribute and designMode property

allow developers to make any HTML element editable by the user. But up until now,

all users have been able to do is type and edit text, which is hardly exciting; they’ve

been able to do that with HTML form elements for ages! It’d be much more impres-

sive if users could format the text using rich-text editing controls, as they would in

a word processing application. That’s where the Editing API method execCommand

comes in.

EXECCOMMAND: FORMATTING AND EDITING ELEMENTS VIA CODE

Invoking the execCommand method of an editable element applies a selected format-

ting command to the current selection or at the current caret position. This

includes basic formatting like italicizing or bolding text and block changes like cre-

ating a bullet list or changing the alignment of a selection. ExecCommand can also be

used to create hyperlinks and insert images. Basic editing commands like copy, cut,

and paste can also be used by execCommand if the browser implements these fea-

tures. Although the HTML5 standard specifies these editing commands, it doesn’t

require the browser to support them. For a full list of commands standardized in

HTML5, see appendix B.

 To initiate a formatting or editing action, you must pass one to three arguments to

execCommand:

■ The first argument, command, is a string. command contains the name of the edit-

ing or formatting action.

■ The second argument, showUI, is a bool. showUI determines whether the user will

see the default UI associated with command. (Some commands don’t have a UI.)

■ The third argument, value, is a string. execCommand will invoke command with

value as its argument.

The number of required arguments for an execCommand depends on the command

passed to the first argument. See appendix B or http://dvcs.w3.org/hg/editing/raw-

file/tip/editing.html for a list of argument specifications for each formatting and

editing command.

STEP 2: IMPLEMENT THE RICH-TEXT EDITING TOOLBAR IN THE VISUAL EDITOR

To use execCommand, the application will use a click event handler to pass the func-

tion name of a pressed toolbar button to execCommand’s command argument. This

function name will be retrieved from the button’s data-command attribute. Add the

code from the following listing to app.js, directly after the code you added in the pre-

vious section.

Editing API 4.0 3.5 5.5 9.0 3.1

Core API

http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html
http://dvcs.w3.org/hg/editing/raw-file/tip/editing.html

82 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

var visualEditorToolbar =
document.getElementById('file_contents_visual_toolbar');

var richTextAction = function(e) {
 var command,
 node = (e.target.nodeName === "BUTTON") ? e.target :
 e.target.parentNode;

 if(node.dataset) {
 command = node.dataset.command;
 } else {
 command = node.getAttribute('data-command');
 }

 var doPopupCommand = function(command, promptText, promptDefault) {
 visualEditorDoc.execCommand(command, false, prompt(promptText,
 promptDefault));
 }

 if(command === 'createLink') {
 doPopupCommand(command, 'Enter link URL:', 'http://www.example.com');
 } else if(command === 'insertImage') {
 doPopupCommand(command, 'Enter image URL:',
 'http://www.example.com/image.png');
 } else {
 visualEditorDoc.execCommand(command);
 }
};

visualEditorToolbar.addEventListener('click', richTextAction, false);

TRY IT OUT—AND CHALLENGE YOURSELF!

With the exception of the Location Map button, which you’ll implement in the next

section, you should be able to format the text in the visual editor to your heart’s con-

tent using the rich-text editing toolbar. A few easy enhancements you could include

here would be to provide support for more commands, to bind a keyboard event to

a command (for example, Ctrl-B or Cmd-B could be mapped to bold), and to indi-

cate the current selection state of the toolbar (for example, the Bold button should

be depressed when the selected text is bold). To implement the latter, you can use

the Editing API method queryCommandState, which is covered in more detail in

appendix B.

3.2.3 Mapping a user’s current location with the Geolocation API

To enable your application to insert a map based on the user’s position, you’ll need to

use the Geolocation and Google Maps APIs. The Geolocation API provides the method

getCurrentPosition, which will enable the application to obtain the user’s geographic

Listing 3.7 app.js–Implementing the rich-text editing toolbar in the visual editor

RichTextAction is
the event handler
for all buttons on
the visual editor
toolbar. When a
user clicks a
toolbar button,
the event handler
determines which
button the user
clicked.

The dataset
object offers

convenient
access to the

HTML5 data-*
attributes. If
the browser

doesn’t
support this,
the app falls
back to the

getAttribute
method.

Because this app will require a customized UI, showUI will be set to false. The
third argument, value, is passed a prompt method (of the Window object). It

contains a string prompting the user for an input value and another string
containing a default input value.

Core API

Core API

83Rich-text editing and geolocation

coordinates. The Google Maps API provides a querying function to return a static map

from a set of submitted coordinates.

 When Google Maps returns the selected map, your application will paste the map

into the visual editor using the execCommand’s insertImage function.

Before you dive in, we want you to know that although this sample application doesn’t

explore all of the features of geolocation, it does show you how simple it is to acquire

a user’s position and integrate it with a mapping service. If you’re looking to build a

more dynamic mapping app, you’ll be glad to know that the Geolocation API can also

support features like:

■ Tracking user movement over set time intervals

■ Obtaining the user’s altitude, heading, and speed

■ Limiting GPS use when battery life is a concern

To find out more about these geolocation features, see appendix B.

STEP 3: USE GEOLOCATION TO INSERT A MAP OF THE USER’S LOCATION

To implement geolocation in your application, in the app.js file locate the if block

that checks whether the command is createLink, insertImage, or something else.

Add the following code before the last else and after the }.

else if(command === 'insertMap') {
 if(navigator.geolocation) {
 node.innerHTML = 'Loading';
 navigator.geolocation.getCurrentPosition(function(pos) {
 var coords = pos.coords.latitude+','+pos.coords.longitude;
 var img = 'http://maps.googleapis.com/maps/api/staticmap?markers='
 +coords+'&zoom=11&size=200x200&sensor=false';
 visualEditorDoc.execCommand('insertImage', false, img);
 node.innerHTML = 'Location Map';
 });
 } else {
 alert('Geolocation not available', 'No geolocation data');
 }
}

When the user clicks the Location Map button on the rich-text editor toolbar, the

browser will request permission for the application to access their location data, as

shown in figure 3.4.

Geolocation API 5.0 3.5 9.0 10.6 5.0

Listing 3.8 app.js–Using geolocation to insert a map of the user’s location

Check to see if the user’s
browser supports geolocation.

The getCurrentPosition method will trigger the browser to ask the user
for access to the user’s location. If permission is granted,

getCurrentPosition executes a callback function, passing the user’s
location data in the form of a Position object.

Use execCommand
to insert a static

Google Maps image
of the user’s

location.

84 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

If the user chooses to allow access to their location, a map with a marker on their posi-

tion will be added to the editor, as illustrated in the screenshot in figure 3.5. In order

for the map to appear, you must click inside the editor’s text box before clicking the

Location Map button.

 Now that users can see their location on a map and manipulate HTML documents,

you need to provide a way of saving their work in actual files. In the next section,

you’ll learn how to use the HTML5 File System API to do just that.

3.3 Managing files locally: the File System, Quota
Management, File, and File Writer APIs

Working with files in web applications has always been tricky. If you wanted to save

a file, you’d select it using a file <input> element, then the browser would upload

Figure 3.4 The browser will request the user’s permission to enable the Geolocation

API. If access is denied, the browser will behave as though it doesn’t support

geolocation.

Figure 3.5 A map of the user’s location will be added to the editor. This map is actually an image

generated by the Google Maps Static API. Easy, huh?

85Managing files locally: the File System, Quota Management, File, and File Writer APIs

the file to the server for storage. Downloading a previously stored file was a simi-

larly slow and cumbersome process. In addition, you were burdened with the

tedious task of developing yet another file management system using one set of

tools and languages on the server and another on the browser side. Suffice it to

say, files and web applications have always been a bit of a bitter cocktail. Thank-

fully, HTML5 is going to greatly speed up this development process with the File

System API.

The File System API offers web applications access to a sandboxed storage space on

the client’s local filesystem. For security purposes, applications can only access the

files in their own sandbox on the client, preventing malicious apps from accessing

and manipulating data stored by other applications. The File System API also offers

applications a choice between a temporary or persistent filesystem. Data in a tem-

porary filesystem can be removed at any stage by the browser, and the data’s contin-

ued existence shouldn’t be relied on, whereas data in a persistent filesystem can

only be removed if specifically requested by the user. Because we want the Super

HTML5 Editor to save a user’s work for later use, we’ll show you how to build a per-

sistent filesystem.

WARNING The File System API was added to HTML5 much later than most
APIs, and so browser support for it is far less mature. Because Chrome is the
only browser currently offering any implementation of the API, the code in
this section has been tested only on Chrome. Every effort has been made to
ensure that it will work in other browsers at a later stage, but unfortunately we
can’t guarantee anything on that front.

The File System API offers almost all the needed functionality to create and manage a

sandboxed filesystem except the ability to request local storage and analyze local stor-

age availability. To do this, you need the Quota Management API.

File System API 13.0 N/A N/A N/A N/A

In this section, you’ll learn

■ How to create a sandboxed filesystem using the File System API

■ How to use the Quota Management API to allocate local storage space

■ How to create filesystem services using the File Writer and File APIs

Quota Management API 13.0 N/A N/A N/A N/A

86 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

The Quota Management API enables the application to determine if enough local file

storage exists to save data. If sufficient space exists, the application can use the Quota

Management API to request storage via a request for quota.

NOTE The File System API makes use of other file-related APIs such as the
File Writer and File APIs. This section will be making calls to these underlying
APIs and pointing them out as the sandboxed filesystem is built.

You’ll walk through seven steps to create the filesystem:

■ Step 1: Create a persistent filesystem.

■ Step 2: Retrieve and display a file list.

■ Step 3: Load files in the File Editor view using the File API.

■ Step 4: View, edit, and delete files in the filesystem.

■ Step 5: Create new, empty files in the filesystem.

■ Step 6: Import existing files from the user’s computer.

■ Step 7: Implement the Save and Preview buttons.

3.3.1 Creating an application filesystem

Using the File System and Quota Management APIs, the process of creating the first

part of the filesystem, the base persistent filesystem, becomes relatively straightfor-

ward and is accomplished in a single listing, listing 3.9. To help you navigate the code,

look out for the following implementation process within the code:

■ Assign a filesystem object to the window fileSystem field.

■ Assign a storage and quota management object to the window storageInfo

field.

■ Set the filesystem as persistent.

■ Request a quota from the local storage system.

STEP 1: CREATE A PERSISTENT FILESYSTEM

With the process in mind, review the following listing to see the detailed implementa-

tion. Then add the code after the call to addEventListener('click', richText-

Action, false).

window.requestFileSystem = window.requestFileSystem ||
window.webkitRequestFileSystem

 || window.mozRequestFileSystem || window.msRequestFileSystem || false;
window.storageInfo = navigator.persistentStorage ||

navigator.webkitPersistentStorage || navigator.mozPersistentStorage ||
navigator.msPersistentStorage || false;

var stType = window.PERSISTENT || 1,
 stSize = (5*1024*1024),
 fileSystem,
 fileListEl = document.getElementById('files'),
 currentFile;

Listing 3.9 app.js–Creating a persistent filesystem

Core API

For
convenience,

point the
filesystem
objects to

possible vendor
prefixes. If the

browser doesn’t
support these

objects, the
objects will
have a false

value.

Define basic variables for use in
the app: storage type and size,
filesystem object, the file list
element, and the currently
selected file (when editing).

87Managing files locally: the File System, Quota Management, File, and File Writer APIs

var fsError = function(e) {
 if(e.code === 9) {
 alert('File name already exists.', 'File System Error');
 } else {
 alert('An unexpected error occured. Error code: '+e.code);
 }
};
var qmError = function(e) {
 if(e.code === 22) {
 alert('Quota exceeded.', 'Quota Management Error');
 } else {
 alert('An unexpected error occurred. Error code: '+e.code);
 }
};

if(requestFileSystem && storageInfo) {
 var checkQuota = function(currentUsage, quota) {
 if(quota === 0) {
 storageInfo.requestQuota(stType, stSize, getFS, qmError);

 } else {
 getFS(quota);
 }
 };
 storageInfo.queryUsageAndQuota(stType, checkQuota, qmError);

 var getFS = function(quota) {
 requestFileSystem(stType, quota, displayFileSystem, fsError);
 }
 var displayFileSystem = function(fs) {
 fileSystem = fs;
 updateBrowserFilesList();
 if(view === 'editor') {
 loadFile(fileName);
 }
 }
} else {
 alert('File System API not supported', 'Unsupported');
}

Unfortunately, you aren’t quite ready to test your filesystem. You need to implement

some functions to retrieve and display any existing files in the app’s filesystem.

3.3.2 Getting a list of files from the filesystem

In listing 3.9, the displayFileSystem function receives a reference to the filesystem

object and then calls a function named updatebrowserFilesList. In this section,

you’ll create this function, which will retrieve a list of files in the app’s filesystem direc-

tory and display it in the My Files zone of the File Browser.

Standard error
function for all
File System API
method calls.

Standard error function for all Quota
Management API method calls.

Check to see if the browser
supports the File System API and
the Quota Management API (also
known as StorageInfo).

Because this app has a persistent filesystem, the request
for quota will trigger a message asking the user’s

permission to access the browser’s filesystem.

If queryUsageAndQuota successfully executes, it passes usage and quota
info to the callback function, checkQuota; otherwise, qmError is called.

CheckQuota determines if sufficient quota exists to store files; if not, then
it needs to request a larger quota.

The request-
FileSystem
method is

used to get
the filesystem

object.

You’ll implement
updateBrowser-
FilesList and
displayBrowserFile-
List in a later section.
These functions will
retrieve and display
files in the app’s
filesystem.

You’ll implement loadFile in a
later section. If the editor
view is the current view, then
load the file into the editor.

88 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

STEP 2: RETRIEVE AND DISPLAY A FILE LIST

You’ll need the next two listings for this work: one to create the updateBrowser-

FilesList function, another to create the displayBrowserFileList function. First,

displayBrowserFileList will accept a complete list of files as an argument and

update the UI to display each of these files with View, Edit, and Delete buttons. Right

after the displayFileSystem function you created previously, add the code from the

next listing.

var displayBrowserFileList = function(files) {
 fileListEl.innerHTML = '';
 document.getElementById('file_count').innerHTML = files.length;
 if(files.length > 0) {
 files.forEach(function(file, i) {
 var li = '<li id="li_'+i+'" draggable="true">'+file.name
 + '<div><button id="view_'+i+'">View</button>'
 + '<button class="green" id="edit_'+i+'">Edit</button>'
 + '<button class="red" id="del_'+i+'">Delete</button>'
 + '</div>';
 fileListEl.insertAdjacentHTML('beforeend', li);

 var listItem = document.getElementById('li_'+i),
 viewBtn = document.getElementById('view_'+i),
 editBtn = document.getElementById('edit_'+i),
 deleteBtn = document.getElementById('del_'+i);

 var doDrag = function(e) { dragFile(file, e); }
 var doView = function() { viewFile(file); }
 var doEdit = function() { editFile(file); }
 var doDelete = function() { deleteFile(file); }

 viewBtn.addEventListener('click', doView, false);
 editBtn.addEventListener('click', doEdit, false);
 deleteBtn.addEventListener('click', doDelete, false);
 listItem.addEventListener('dragstart', doDrag, false);
 });
 } else {
 fileListEl.innerHTML = '<li class="empty">No files to display'
 }
};

Now, to execute the displayBrowserFileList function you just created, you need to

pass an array of all the files in the app’s directory. The updateBrowserFilesList func-

tion will do just that, using a DirectoryReader object and reading the list of files one

set of files at a time until all files in the app’s directory have been read. Add the code

from the next listing right after the displayBrowserFileList function.

var updateBrowserFilesList = function() {
 var dirReader = fileSystem.root.createReader(),
 files = [];

Listing 3.10 app.js—Building the file list UI from an array of files

Listing 3.11 app.js—Reading the file list using the directory reader

Update the file
counter with
the number of
files in the
filesystem.

Iterate over
each file in

the filesystem
using the

forEach array
function.

Draggable will be
discussed in a later

section on drag-and-
drop interactivity.

Attach event
handlers to the
View, Edit, and
Delete buttons
and the list item
itself.

Later in the
chapter, you’ll

implement
doDrag to

support drag-
and-drop
functions.

If there are no files, show an
empty list message.

Create a directory reader. Later
in the listing, you’ll use it to
get the complete list of files.

89Managing files locally: the File System, Quota Management, File, and File Writer APIs

 var readFileList = function() {
 dirReader.readEntries(function(fileSet) {
 if(!fileSet.length) {
 displayBrowserFileList(files.sort());
 } else {
 for(var i=0,len=fileSet.length; i<len; i++) {
 files.push(fileSet[i]);
 }
 readFileList();
 }
 }, fsError);
 }
 readFileList();
};

Next, you’ll discover how to implement the View, Edit, and Delete buttons displayed

for each of the files in the filesystem.

3.3.3 Loading, viewing, editing, and deleting files

Back in the displayFileSystem function in listing 3.9, you may have noticed an if

block that called a function named loadFile if the current view was the editor view.

Let’s go ahead and implement that function now, as well as some small functions that

will allow users to view, edit, and delete files in the filesystem.

STEP 3: LOAD FILES IN THE FILE EDITOR VIEW USING THE FILE API

The loadFile function uses the File System API method getFile to retrieve the

FileEntry from the filesystem. In order to read the file contents, loadFile uses the File

API method readAsText. Lastly, loadFile displays the file contents to the visual and

HTML editors. Add the code from the following listing to app.js right after the update-

BrowserFilesList function you added previously.

var loadFile = function(name) {
 fileSystem.root.getFile(name, {}, function(fileEntry) {
 currentFile = fileEntry;
 fileEntry.file(function(file) {
 var reader = new FileReader();
 reader.onloadend = function(e) {
 updateVisualEditor(this.result);

File API 13.0 3.6 N/A 11.1 N/A

Listing 3.12 app.js—Loading files in the File Editor view

The directory
listing is read
in one set of

files at a time,
so you’ll use a

recursive
function to

keep reading
until all files

have been
retrieved.

When the end of the
directory is reached,
call the
displayBrowserFileList
function, passing the
alphabetically sorted
files array as an
argument.

If you’re not at the end of the
directory, push the files just read into
the files array and recursively call the
readFileList function again.

Core API

The getFile method takes four arguments: (1) relative or absolute path to filename, (2) options
object ({create: boolean, exclusive: boolean}—both default to false), (3) success callback

function, and (4) error callback function. If a FileEntry is found, getFile passes the selected
FileEntry to the fileEntry argument of the success callback function. See table 3.1 for a list of

possible options arguments and their effect on getFile behavior.

The file method of the File System
API is used to retrieve the file
from the fileEntry and pass the
file to the callback function.

A FileReader
object, reader,
is used to read
the contents of
the file. When

reader is done,
it triggers the

onloadend
event handler
to update the

visual and
HTML editors.

90 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

 updateHtmlEditor(this.result);
 }
 reader.readAsText(file);
 }, fsError);
 }, fsError);
};

Table 3.1 reviews the behavior of the File System API method getFile when passed

different values of the options object. The object consists of two Boolean fields. The

first, create, determines if getFile should try to create a new FileEntry object

(create:true) or retrieve an existing FileEntry object (create:false). The second

field, exclusive, determines if getFile should check for the existence of a FileEntry

object with the same file path name as getFile’s filename argument (exclusive:true).

We know that at this point you may be thinking, “When am I going to be able to test

this code?” Just a few more sections, we promise.

STEP 4: VIEW, EDIT, AND DELETE FILES IN THE FILESYSTEM

The code to view, edit, and delete files in the filesystem is quite straightforward. The

three functions in listing 3.13 use two File System API methods: toURL and remove.

■ The toURL method retrieves a URL location at which the file resource can be

accessed. Using toURL is really convenient for viewing files. It saves you from

having to read the contents of the file and display it using JavaScript. Instead,

you can invoke a popup window and pass the URL location to it.

■ The remove method deletes the file and executes a callback when it’s done.

To implement the view, edit, and delete functionality, add the code from the next list-

ing to app.js right after the loadFile function.

Table 3.1 A list of getFile’s responses to various configurations of the options argumenta

a. http://www.w3.org/TR/file-system-api/ .

FileEntry state options object getFile response

FileEntry found at given file path name create: false

exclusive ignored

FileEntry is returned

create: true

exclusive: true

Error is thrown

FileEntry found at given file path name,

but the FileEntry is a directory

create: false

exclusive ignored

Error is thrown

No FileEntry found at given file path name create: false

exclusive ignored

Error is thrown

create: true

exclusive ignored

FileEntry created exclusive

ignored and returnedb

b. You cannot create a FileEntry if its immediate parent directory doesn’t exist.

With a new FileReader created and
its onloadend event defined, call
readAsText to read the file and load it
into reader’s result attribute.

Core API

http://www.w3.org/TR/file-system-api/

91Managing files locally: the File System, Quota Management, File, and File Writer APIs

var viewFile = function(file) {
 window.open(file.toURL(), 'SuperEditorPreview', 'width=800,height=600');
};

var editFile = function(file) {
 loadFile(file.name);
 location.href = '#editor/'+file.name;
};

var deleteFile = function(file) {
 var deleteSuccess = function() {
 alert('File '+file.name+' deleted successfully', 'File deleted');
 updateBrowserFilesList();
 }

 if(confirm('File will be deleted. Are you sure?', 'Confirm delete')) {
 file.remove(deleteSuccess, fsError);
 }
};

If you’ve been trying to test this functionality as you made your way through the sec-

tion, you may have found it difficult given that there are no files to load, view, edit, or

delete! Next, you’ll learn how to create new empty files and how to allow users to

import existing files from their computer using a traditional file <input> element.

3.3.4 Creating new files

There are two ways of creating new files in the File System API. The first is to create a

new, empty file. The second is to allow the user to import an existing file from their

computer using a file <input> element. You’ll now implement both of these options,

starting with creating empty files.

STEP 5: CREATE NEW, EMPTY FILES IN THE FILESYSTEM

In listing 3.12 you saw how the getFile method returns a FileEntry object for a given

filename if it exists:

var loadFile = function(name) {
 fileSystem.root.getFile(name, {}, function(fileEntry) {...

You can also use getFile to create a new FileEntry, if it doesn’t exist, by passing a con-

figuration object to the method. The code in listing 3.14 shows how to do this. The

logic for creating a new file will be placed in the event handler, createFormSubmit,

and attached to the File Browser create button. CreateFormSubmit will perform basic

validation to ensure that the user is creating an HTML file and that the file doesn’t

already exist, and if all validation passes, it will create the file. Add this code directly

after the deleteFile function.

Listing 3.13 app.js—Viewing, editing, and deleting files

The toURL method makes it a breeze to view
the contents of a file, because you can

simply launch it in a new browser window.

To edit the file, you load the file
into the visual and HTML editors
and make the File Editor view
active by changing the URL hash.

When the remove function has completed, it will execute the
deleteSuccess callback function, which calls the updateBrowserFilesList

function to ensure the listing is updated.

92 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

var createFile = function(field) {
 var config = {
 create: true,
 exclusive: true
 };

 var createSuccess = function(file) {
 alert('File '+file.name+' created successfully', 'File created');
 updateBrowserFilesList();
 field.value = '';
 };

 fileSystem.root.getFile(field.value, config, createSuccess, fsError);
};

var createFormSubmit = function(e) {
 e.preventDefault();
 var name = document.forms.create.name;
 if(name.value.length > 0) {
 var len = name.value.length;
 if(name.value.substring(len-5, len) === '.html') {
 createFile(name);
 } else {
 alert('Only extension .html allowed', 'Create Error');
 }
 } else {
 alert('You must enter a file name', 'Create Error');
 }
};

document.forms.create.addEventListener('submit', createFormSubmit, false);

PROGRESS CHECK: TRY IT OUT!

Finally! You can test the code! You should be able to create empty files using the form

on the File Browser view, as illustrated in figure 3.6. When the file has been created,

you should be able to view it (it will be just an empty document, of course), edit it

(although you won’t be able to save changes just yet), and delete it.

 The app is finally starting to take shape! Next, let’s see how you can allow a user to

import existing files on their computer into the application.

STEP 6: IMPORT EXISTING FILES FROM THE USER’S COMPUTER

Importing files from the user’s computer is a little more complicated than creating an

empty file. You need to create a FileEntry and then write the contents of the imported

file to the FileEntry using the File Writer API.

Listing 3.14 app.js—Creating a new empty file

File Writer API 13.0 N/A N/A N/A N/A

The config object is passed to the
getFile method, telling getFile to create
a FileEntry, but only if a FileEntry with
that name doesn’t exist.

When the getFile method returns successfully,
display a confirmation message, reload and

display the files list, and clear the form field.

This is the event
handler for the File
Browser create button.
When the create form
is submitted, perform
validation, and if it
passes, call the
createFile function.

Core API

93Managing files locally: the File System, Quota Management, File, and File Writer APIs

In addition, because you added the multiple attribute to the File Browser Import form,

...<form name="import">
 <div>
 <h2>Import existing file(s)</h2>
 <input type="file" name="files" multiple accept="text/html">
 <input type="submit" value="Import">
 </div>...

you must handle the possibility of importing multiple files at one time. Although imple-

menting this isn’t difficult, the validation process becomes more complicated, as you’ll see.

Copy the following code, and insert it right after the event listener you added to the create

form in the previous section.

var importFiles = function(files) {
 var count = 0, validCount = 0;

 var checkCount = function() {
 count++;
 if(count === files.length) {
 var errorCount = count - validCount;
 alert(validCount+' file(s) imported. '+errorCount+'
 error(s) encountered.', 'Import complete');
 updateBrowserFilesList();
 }
 };

Listing 3.15 app.js—Importing files from the user’s computer

Figure 3.6 The file index.html has been successfully created!

If all of the files have been
checked, show how many were
imported and how many failed
and update the file list.

94 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

 for(var i=0,len=files.length;i<len;i++) {
 var file = files[i];

 (function(f) {
 var config = {create: true, exclusive: true};
 if(f.type == 'text/html') {
 fileSystem.root.getFile(f.name, config,
 function(theFileEntry) {
 theFileEntry.createWriter(function(fw) {
 fw.write(f);
 validCount++;
 checkCount();
 }, function(e) {
 checkCount();
 });
 }, function(e) {
 checkCount();
 });
 } else {
 checkCount();
 }
 })(file);
 }
};

var importFormSubmit = function(e) {
 e.preventDefault();
 var files = document.forms.import.files.files;
 if(files.length > 0) {
 importFiles(files);
 } else {
 alert('No file(s) selected', 'Import Error');
 }
};

document.forms.import.addEventListener('submit', importFormSubmit, false);

At this point you should be able to import existing HTML files from your computer into

the application. You should also be able to view, edit (well, you can view in the File Edi-

tor view; you won’t be able to save changes just yet), and delete files. Figure 3.7 illus-

trates the dialog window that pops up when you click the Choose Files button.

3.3.5 Saving files using the File Writer API

The final part of the filesystem functionality you need to add to the application is saving

files in the File Editor view using the File Writer API. You’ve already seen the File Writer

API in action; in the previous section when importing files from the user’s computer,

you used the File Writer API to save the contents of existing files into the newly created

files in the application’s filesystem. Now you’ll use a similar approach to implement the

Save and Preview buttons in the File Editor view of the application.

STEP 7: IMPLEMENT THE SAVE AND PREVIEW BUTTONS

To implement the Save and Preview buttons, add the code from the next listing just

after the event listener you added to the import form in the previous section.

Loop through the files the user has
selected and attempt to create
them in the app’s filesystem.

Because this for loop
may execute a
callback function that
uses a file object, f,
defined by the loop,
and because an
iteration of the loop
may finish before the
callback has fired, a
closure was
implemented to
preserve the file
object state.

GetFile creates a new
FileEntry in the app’s
filesystem, and then

createWriter creates a
FileWriter for the

FileEntry. At this point,
you can copy the

imported file, f, by
calling the FileWriter

method, write, and
passing f as an

argument.

Read the files from the file’s
<input> element and call the
importFiles function if at least
one file has been selected.

95Managing files locally: the File System, Quota Management, File, and File Writer APIs

var saveFile = function(callback) {
 var currentView = function() {
 if(htmlView.style.display === 'block') {
 return 'html';
 } else {
 return 'editor';
 }
 }

 var content;

 if(currentView() === 'editor') {
 var x = new XMLSerializer();
 content = x.serializeToString(visualEditorDoc);
 } else {
 content = htmlEditor.value;
 }

 currentFile.createWriter(function(fw) {
 fw.onwriteend = function(e) {

Listing 3.16 app.js—Saving files using the File Writer API

Figure 3.7 After the user clicks the Choose Files button, a dialog window pops up.

Check if the currently
displayed view is the
visual or HTML editor.

Get the
contents of the
relevant editor. When the file writer, fw,

finishes resetting the
file’s length to zero, fw
triggers the onwriteend
event handler. This event
handler redefines fw’s
onwriteend event
handler and then saves
the file by calling write.

96 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

 fw.onwriteend = function(e) {
 if(typeof callback === 'function') {
 callback(currentFile);
 } else {
 alert('File saved successfully', 'File saved');
 }
 isDirty = false;
 };
 var blob = new Blob([content],
 {text: 'text/html’, endings:’native'});
 fw.write(blob);
 };
 fw.onerror = fsError;
 fw.truncate(0);
 }, fsError);
};

var previewFile = function() {
 saveFile(viewFile);
};

var saveBtn = document.getElementById('file_save');
var previewBtn = document.getElementById('file_preview');

saveBtn.addEventListener('click', saveFile, false);
previewBtn.addEventListener('click', previewFile, false);

The filesystem functionality of the application is now complete. You should be able to

create, load, view, edit, save, and delete HTML files using the app. If you want to take

the application further, you could easily extend it so that it supports multiple directo-

ries, allows editing of additional file types (CSS and JavaScript support would be nice),

and provides syntax highlighting of the HTML markup. There are a plethora of oppor-

tunities for expansion.

 We’ll wrap up this chapter in the next section by adding a jazzy extra—drag-and-

drop support.

3.4 Adding drag-and-drop interactivity

Drag-and-drop interactions are a popular feature in computer applications. For exam-

ple, consider the GUIs of current OSes. They allow you to move files, documents, and

applications around by dragging them from one location and dropping them to

another. In Mac OS X, if you have an external hard drive plugged into your computer,

you can eject it by dragging it to the trash icon in the dock.

 In recent years, web applications have started to provide drag-and-drop support.

Common examples are copying/moving items from one list to another; rearranging

the order of a list; moving regions of the page around for a customized experience;

and moving images, files, or documents to virtual directories in content management

systems. Up until now, developers had to rely on using JavaScript frameworks to pro-

vide web apps with decent drag-and-drop features. In HTML5, however, a full Drag and

Drop API has been specified to supplant these JavaScript frameworks.

When file writer, fw, has
finished writing content

to the currentfile, fw
triggers the event

handler for onwriteend.
Callback refers to the

callback function passed
to the saveFile function.

Use a Blob to
construct a
blob object
from content,
a string-based
representation
of the editor’s
content.

Use the
endings

parameter to
specify what

type of end-of-
line marker

should be used.
A value of

native instructs
a Blob

constructor to
use an end-of-

line marker
native to the

browser’s
underlying OS.

Before saving data with file writer, fw, use truncate(0) to
ensure its length attribute is set to zero. Otherwise, when
the application saves a file that’s shorter than its previous
version, the length attribute will be unchanged. As a result,
you’d see old text filling in the gap between the new
shorter file and its previous longer version.

SaveFile has been passed
a callback function,
viewFile. It’s called when
saveFile has finished
writing the editor
contents to currentFile.

97Adding drag-and-drop interactivity

In this section, you’ll use the Drag and Drop API to enhance the Super HTML5 Editor

application by

■ Enabling users to import files into the application by dragging them in from

their computer

■ Allowing users to export files from the application by dragging them to their

computer

3.4.1 Dragging files into an application for import

To allow users to drag files into the application, you need to create a target zone or

drop zone where the user can drag the files and expect them to be imported. If you’ve

already loaded the application in your browser, you’ll probably have noticed a note at

the bottom of the Create File zone in the File Browser view. The note informs users to

import files by dropping them anywhere in this zone. Let’s stay true to our word and

provide this functionality.

 To enable the Create File zone, you need to implement two event handlers for the

zone: one for the drop event and another for the dragover event. The drop event han-

dler will enable the application to import files that are dropped into the Create File

zone, and the dragover event handler will signal a pending copy operation to the app.

The app will respond to the signal by adding a copy decal to the file icon(s) being

dragged into the Create File zone.

 Add the code in the following listing right after the line previewBtn.addEvent-

Listener('click', previewFile, false).

var fileDropZone = document.getElementById('filedrop');

var importByDrop = function(e) {

 e.stopPropagation();
 e.preventDefault();

 var files = e.dataTransfer.files;

 if(files.length > 0) {
 importFiles(files);
 }
};

Drag and Drop API 4.0 3.5 5.5 12.0 3.1

Listing 3.17 app.js—Allowing users to import files by dropping them in the application

Core API

Designate
the drop
zone for

files as the
element

with the ID
filedrop.

When files are dropped into the browser window,
the default browser behavior is to load the files and
navigate away from the app, so you need to cancel
this default behavior. First, invoke stopPropagation
to prevent the drop event from bubbling up to any
ancestor elements of fileDropZone. Second, invoke
preventDefault to stop the browser from calling the
default event handler attached to fileDropZone.

If the user is dragging files, these
will reside in the dataTransfer
object. To load them into the app,
pass them to the importFiles
function (defined in listing 3.15).

98 CHAPTER 3 File editing and management: rich formatting, file storage, drag and drop

var importDragOver = function(e) {
 e.preventDefault();
 e.dataTransfer.effectAllowed = 'copy';

 e.dataTransfer.dropEffect = 'copy';
 return false;
};

fileDropZone.addEventListener('drop', importByDrop, false);
fileDropZone.addEventListener('dragover', importDragOver, false);

TRY IT OUT!

With this code added to your app, try it out by dragging an HTML file from your com-

puter into the designated drop zone. If a file with the same name doesn’t exist, it

should be successfully imported into the filesystem, just as if you had manually

selected the file using the regular file <input> dialog box. You can even drag multiple

files into the application at a time. Next, you’ll wrap things up by enabling users to

export files by dragging them out of the application.

3.4.2 Dragging files out of an application for export

Some of the groundwork for your export drag-and-drop functionality has already

been set. In listing 3.10 in the displayBrowserFileList function, you added code

that created a new list item for each of the files in the filesystem. If you look at this

code, you’ll notice that the element you constructed has an attribute, draggable,

set to true:

...
files.forEach(function(file, i) {
 var li = '<li id="li_'+i+'" draggable="true">'+file.name
 + '<div><button id="view_'+i+'">View</button>'
 + '<button class="green" id="edit_'+i+'">Edit</button>'
 + '<button class="red" id="del_'+i+'">Delete</button>'
 + '</div>';
...

In addition, you’ll see that a listener was added to the dragstart event of this item:

...
var doDrag = function(e) { dragFile(file, e); }
...
listItem.addEventListener('dragstart', doDrag, false);...

Believe it or not, all you need to do to implement the export functionality is to define

the dragFile function. One last time, add the code in the next listing to app.js, right

after the line fileDropZone.addEventListener('dragover', importDragOver, false).

var dragFile = function(file, e) {
 e.dataTransfer.effectAllowed = 'copy';
 e.dataTransfer.dropEffect = 'copy';

Listing 3.18 app.js—Allowing users to export files by dragging them out of the app

Because you want the imported file(s) to
be copied when they’re dropped into the
zone, set the dragover event properties,
effectAllowed and dropEffect, to copy.
When the user drags the file over the
drop zone, the file image(s) will change
to indicate a pending copy operation.

Core API

99Summary

 e.dataTransfer.setData('DownloadURL', 'application/octet-
stream:'+file.name+':'+file.toURL());

};

If you were hoping for more code than that to implement the export functionality,

you’re probably disappointed—that really is all you need. The toURL method that was

used previously in the viewFile method is put to use again, this time to construct a

downloadable object (DownloadURL) that’s saved to the user’s computer. Be sure to

give it a try; drag one of the files out of your application and drop it on your com-

puter’s desktop.

 At long last the application is complete. At this point you should have a fully func-

tional web-based HTML editor that allows you to import and export files using drag

and drop.

3.5 Summary

Not long ago the idea that you could build a full client-side WYSIWYG HTML editor

application featuring the ability to create, edit, save, and drag/drop files was nothing

more than a daydream for web application developers. In HTML5 this is all now a real-

ity, and as browser support steadily improves, we’re getting closer to a situation where

users will come to expect features like these to be a part of every web application. Pro-

gressive functionality like this will ensure that web applications can continue to evolve

and become more innovative, while maintaining the web’s tradition of openness and

preference for standards-driven development.

 Although we’ve been looking at HTML5 features for supporting rich UI applica-

tions, HTML5 can also support the development of social and collaborative applications.

In the next chapter, you’ll look at creating chat message and project planner applica-

tions. These apps will teach you about the many new messaging features in HTML5,

including cross-domain messaging, WebSockets, and server-sent events (SSE).

When the user starts dragging a draggable item in the app, the setData method
of the dataTransfer object can be used to define what data should be dropped.

Chapter 4 at a glance

Look for this icon throughout the chapter to quickly locate the topics outlined

in this table.

Topic Description, methods, and so on Page

Server-sent events Creating events in the browser from the server:

■ Creating an EventSource()
■ Listening to server events with addEventListener()

111

111

WebSockets Two-way, event-driven communication:

■ Writing applications using WebSockets
■ Messaging on the client side

116

125

Cross-document

messaging

Communication between scripts in different windows:

■ Sending messages with postMessage()
■ Receiving messages with onmessage()

126

126

Core API

